Tecnología de la televisión: del disco de Nipkow a la revolución numérica [ Carmen Peñafiel] on *FREE* shipping on qualifying offers. Lejona. Nipkow-Disk Category:Nipkow disks enwiki Nipkow disk; eowiki Nipkov- disko; eswiki Disco de Nipkow; frwiki Disque de Nipkow; glwiki Disco de Nipkow . Deep Red Leather-like Accent Chair, Small Office Waiting Area Chair – perfect for small spaces, the clean lines and art deco look of this chair are almost as great.

Author: Femuro Vudotaxe
Country: Niger
Language: English (Spanish)
Genre: Business
Published (Last): 13 November 2017
Pages: 303
PDF File Size: 10.75 Mb
ePub File Size: 13.87 Mb
ISBN: 896-5-21393-431-9
Downloads: 67059
Price: Free* [*Free Regsitration Required]
Uploader: Mazutaxe

Nipow Nipkow disk sometimes Anglicized as Nipkov disk; patented inalso known as scanning diskis a mechanical, rotating, geometrically operating image scanning device, patented in by Paul Gottlieb Nipkow.

Presentation Name

The device is a mechanically spinning disk of any suitable material metal, plastic, cardboard, etc. The holes may also be square for greater precision. These holes are positioned to form a single-turn spiral starting from an external radial point of the disk and proceeding to the center of the disk. When the disk rotates, the holes trace circular ring patterns, with inner and outer diameter depending on each hole’s position on the disk and thickness equal to each hole’s diameter.

The patterns may or may not partially overlap, depending on the exact construction of the disk. A lens projects an image of the scene in front of it directly onto the disk.

If the sensor is made to control a light behind a second Nipkow disk rotating synchronously at the same speed and in the same direction, the image will be reproduced line-by-line. The size of the reproduced image is again determined by the size of the disc; a larger disc produces a larger image.

When spinning the disk while observing an object “through” the disk, preferably through a relatively small circular sector of the disk the viewportfor example, an angular quarter or eighth of the disk, the object seems “scanned” line by line, first by ddisco or height or even diagonally, depending on the exact sector chosen for observation. By spinning the disk rapidly enough, the object seems complete and capturing of motion becomes possible.

Disco de Nipkow

niokow This can be intuitively understood by covering all of the disk but a small rectangular area with black cardboard which stays fixedspinning the disk and observing an object through the small area. One of the advantages of using a Nipkow disk is that the image sensor that is, the device converting light to electric signals can be as simple as a single photocell or photodiodesince at each instant only a very small area a pixel is visible through the disk and viewportand so decomposing dico image into lines is done almost by itself with little need for scanline timing, and very high scanline resolution.


A simple acquisition device can be built by using an electrical motor driving a Nipkow disk, a small box containing a single light-sensitive electric element and a conventional image focusing device lens, dark boxetc. Another advantage is that the receiving device is very similar to the acquisition device, except that the light-sensitive device is replaced by a variable light source, driven nilkow the signal provided by the acquisition device.

Some means of synchronizing the disks on the two devices must also be devised several options are possible, ranging from manual to electronic control signals. These facts helped immensely nipjow building the first mechanical television nupkow by the Scottish inventor John Logie Bairdas well as the first “TV-Enthusiasts” communities and even experimental image radio broadcasts in xisco s.

The resolution along a Nipkow disk’s scanline is potentially very high, being an analogue scan. However ce maximum number of scanlines is much more limited, being equal to the number of holes on the disk, which in practice ranged from 30 towith rare hole disks tested.

Another drawback of the Nipkow disk as an image scanning device: So the ideal Nipkow disk should have either a very large diameter, which means smaller curvatureor a very narrow angular opening of its viewport.

Another way to produce acceptable images would be to drill smaller holes discl or even micrometer scale closer to the outer sectors of the disk, but technological evolution favoured electronic means of image acquisition. Another serious disadvantage lay with reproducing images at the receiving end discoo the transmission which was also accomplished with a Nipkow disk.

Further disadvantages include the non-linear geometry of the scanned images, and the impractical size of the disk, at least in the past.


The devices using them were also noisy and heavy with very low picture quality and a great deal of flickering. The acquisition part of the dico was not much better, requiring very powerful lighting of the subject. Disk scanners share a major limitation with the Farnsworth image dissector. Light is conveyed into the sensing nipkiw as the small aperture scans over the entire field of view. The actual amount of light gathered is instantaneous, occurring through a very small aperture, and the net yield is only a microscopic percentage of the incident energy.

Iconoscopes and their successors accumulate energy on the target continuously, thereby integrating energy over time.

The scanning system simply “picks off” the accumulated charge as it sweeps past each site on the target. Simple calculations show that, for equally sensitive photosensitive receptors, the iconoscope is hundreds to thousands of times more sensitive than the disk or the Farnsworth scanner.

The scanning disk can be replaced by a polygonal mirror, but this suffers from the same problem — lack of integration over time. Apart from the aforementioned mechanical television, which never became popular for the practical reasons mentioned above, a Nipkow disk is used in one type of confocal microscopea powerful optical microscope.

From Wikipedia, the free encyclopedia. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources.

Unsourced material may be challenged and removed. March Learn how and when to remove this template message. Retrieved 28 April Archived from the original on Retrieved from ” https: Television technology History of television German inventions in science in Germany.

Articles needing additional references from March All articles needing additional references. Views Read Edit View history. In other projects Wikimedia Commons. This page was last edited on 15 Julyat By using this site, you agree to the Terms of Use and Privacy Policy.